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By Wyman G. Fair and Yudell L. Luke 

In this note we derive rational approximations (in Eqs. (20) and (21) below) 
to the integrals 

2 2 t)-1/2 

and 

2 2 t)1/2 (2) E(, k) |f(1-12 sin t) dt 

where k2 is real and 0 < sp < 7r/2, by obtaining the main diagonal Pade approxima- 
tions to closely related functions. It is sufficient to consider the case 0 < k2 < 1, 
for if k2 > 1, 

(3) Ft(p, k) = klF(01, k1) and E(<p, k) = k1[E(Oll, k1) + (1 -k2) 2F (/l, k1) ], 

ki = 1/k and /3 = arc sin (k sin sp), 

while if k2 < 0, 

FQp, k) = (1-k2 2) 1/2F(02, k2) and 

EQp, 2-1/2 E(/32, 1Ck22sinO/2 COS 032 E(4 k) = (1- k12) LE(2 k2) 2- 2 1/2] 
(4) - ~~~~~~~~(1-k22 sin 2) 

k2 = Ik (1-k2 /2 and 2 =arc sin [(1 2 2) sin j. 

Define m = k2 and 

+M (2mSl/ (m-2) (m + 1)] L 2( - )21/3>0 

a= 1+m sin2 '2/i 
c=[(i+~~~~~~~)2]1/3<o, a-c~~~~~~~~1/ 

h=a[c+ ( 2 1)]<0, g=2m-1, s=2[ 2m j 

r(x) = x3 + hx + g, v(x)= (x- c)3(x- a) 

IT(x) = f [r(t)]-1/2dt and 12(X) = f [v(t)i-1/2dt. 
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Then a > b > c are the real roots of r(z) = 0 and it follows from [1] that 

(6) FQ(p, k) = s-'Ii(x) and E(sp, k) = s-112(x). 

Set 

(7) Gi(x) = [r(x)]1/2I, (x) G2 (x) - 
IV 

2x) I12( X) 

Then G (x) (1 = 1, 2) satisfies the differential equation 

(8) r(x),yi(x)G1'(x) - a(x)Gi(x) + r(x) = 0, 

where 

y i(x)=1, Y2(x) = 2x, Si(x) =(3x + h), 

2 (X) = x3- 2(a + 2b)x2 + (ab - bc - 3ac)x + 2abc. 

For convenience, we make the transformations 

(9) z = 1/x, Gi(z) = x-1[2 + x2H,(x)], G2(z) = H2(z) 

Then (8) becomes 

(10) 771(x)HI'(x) + Pi(x)Hi(x) + Wz(x) = 0, 1 = 1, 2, 

where 

n1(x) = x(1+ hx2 + gx3), f2(x) = 2-7i(x) Pi (x) 5 + 3h x2 + gx3 

p2(x) = 1- 2(a + 2b)x + (ab - bc- 3ac)x2 -2gx3, i (x) =-2h - 3gx, 

2 3 ~~~4h 
02 (X)= -1- hX2 - gx3, H,(0) = 5 and H2(0) = 1. 

Main diagonal Pade approximations for the solution to (10) are readily computed 
by using the results of [2]. For completeness we list the recurrence relations which 
determine the main diagonal Pade approximations to HI(x), 1 = 1, 2. In the nota- 
tioii of [2], we have: for I = 1; 

y(x) = Hi(X), 

yo = y(0) = 4h/5, 

(11) Po = p2O= 0, p=l = , p3 = h, p4 =g, 

qo = 5/2, q, = 0, q2 = 3h/2, q3 g 

so = -2h, s, =-3g, S2 = S3 = 0, 

and for 1 = 2, y(x) = H2(x), 

Yo = y(O) = 1, 

PO = P2 = , pi = 2, p3 = 2h, p4 = 2g, 

(12) qo = 1, q= -2(a + 2b), q2 = ab-bc-3ac, q3= -2g, 

So = -1, S1 = 0, S2 =-h, S3 = -g. 

Let 
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An 
n 

kn k 

(13) n = An = ,, kX Bn = E bn,kX 
Bn k=0 k=0 

be the nth-order main diagonal Pade approximations to y(x). Then An and Bn satisfy 

(14) An = (1 + j3nx)An-1 + anXAn-2 

The equations which determine n and /3n are 
_ ~ ~ ~~~~~~~~n - 

(15) an = n1, (1) nan-1,1pi + an-1,2Ul + 2 Z an-1,jTj-2,1 

and 

n= - [7n-1,2 + an,2U2 + 2 Z an,j(7j-2,2 + /3j-1rj-2,1)] 

X 2[,n-1, + an,2Ul + 2 Z an,jTj-2,1] nfn = 2, 3, 4 * * 

where 

Tn,k = Tn-1,k+2 + 213n7n-l,k+l + ann-2,k + /3 27-n 1,k + ( 1)n an,lpk+2 

+ aYn,2Uk+2 + an, 2O1nUk+1 

n 

+ 2 Z an,j[7j-2,k+2 + (O3n + /3j-1)rj-2,k+1 + /3n/3j-1Tj-2,k] 
j=3 

(16) n = 2,3,4, ..k = 1,2,3, 

Uk = 2yoqk + 2Sk + (ai,, + b1,lyo)qk-1 + 2bl,lsk-1 k = 1, 2, 3, 4, 

ak,j = ak-ak-1 ... aj, ak,k = ak, ak-1,k = 1 and ak,j = 0, kz < j - 1 

The starting values for computation are 

7'0,k = yoqk + Sk 1 

71 k = -alpk+2 + yoqk+2 + Sk+2 + (ai,, + bl,lYO)qk+l 

+ 2b1,lsk+l + ai,lbl,lqk + b2,1sk, k = 1, 2, 3 

for 1 = 1, 

al = -6g/7, 3 =bi 
(17) 56h3 14h2 

a1,1 = 6g/7 + 225g' bi,j = 45g 

for 1 = 2, 

al -2/3(a + 2b), 131 = bi, 

4a2 + 16b2 + 25ab - 9bc - 27ac - 9h 
(18) a,,, = 30(a + 2b) 

- 4a2 _ 16b2 - 19ab + 3bc + 9ac - 3h 
bi1 - 10(a + 2b) 

In either case, we have 



INCOMPLETE ELLIPTIC INTEGRALS 421 

(19) Aoo=yoI A= yo+ai,ix, Bo= 1, B= 1+bi,ix. 

Thus, rational approximations to the incomplete elliptic integrals of the first 
and second kind respectively are 

r ) 1/2 A,Flx 
(20) Fn(px k) - [ 2x + A,(1/x) 

and 

(21) E, k) - 2x [v (x) ] A (ll/x) s B, (llx) 
In the special case, k2 = m = 2, the approximation (20) does not apply. How- 

ever, since g = 0 in this case, (20) becomes 

(22) t(1 + ht)H/' (t) + 4 (5 + 3ht)H1 (t) - h =, Hi (0) = 4h/5, t = X 

and Hi(t) (4h/5) 2F1(1, 3/4; 9/4; - ht) is the solution to (22). Pade approxima- 
tions to this hypergeometric function together with an error analysis are available 
in [3]. 

Numerical results indicate rapid convergence of the approximations (20) and 
(21). These approximations are evidently insensitive to changes in k2 and are very 
powerful for p < 7r/3. They weaken as so approaches r/2; however, the Landen 
transformations 

2 
F(<, k) = F(pi, k1) , 

E(S, k) = (1 + k)EQ1, k 1) + (1 -k)FQ, k1) -k sin p, 
where 

(23) k1 = 2Vl\/(1 +lk) and pj= + ' arcsin (k sin<), 

should reduce sp to the desirable range in all but the extreme cases. For example, 
if k = 2 and P =7r/2 we have 

(24) F (, r/2) = 4F(2V/2/3, 7r/3). 
The approximations 43Fn(2 i 2/3, r/3) are listed in Table I. 

TABLE I 

43 Fn 

4 1.68579 32446 
6 1.68575 05579 
8 1.68575 03557 

10 1.68575 03548 
12 1.68575 03548 

The true value is 1.68575 03548. 
We present in Table II a tabulation of en = IF(sp, k) -Fn k) I for a number 

of values of n, so and k. The behavior of the error involved in approximating E(SP, k) 
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TABLE II 
= .25 

p\n 4 6 8 10 20 

600 1.89 (-5)* 4.1 (-7) 4.0 (-8) 
80? 7.33 (-2) 2.11 (-2) 7.11 (-3) 3.84 (-3) 8.1 (-7) 

by E((p,l k) is almost identical and so is omitted. In both tables en < 1.0 X 10-8 
for so < 300 and n > 4 (k arbitrary) so that these values are not listed. No entry 
in the table signifies an error less than 1.0 X 10-8. 

k2 = .75 

p\n F 4 6 8 10 20 

600 1.92 (-3) 4.7 (-7) 
80? 1.51 (-1) 2.55 (-2) 5.44 (-3) 1.13 (-3) 8.0 (-7) 

* The number in parentheses indicates the power of ten by which the tabular entry is to be 
multiplied. 

The authors thank John Nelson who wrote the FORTRAN program for the 
computations. This program is available from the authors on request. 
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